
UNIT – II:

Arrays: Introduction to Linear and Non- Linear Data Structures, One- Dimensional Arrays,

Array Operations, Two- Dimensional arrays, Multidimensional Arrays, Pointers and Arrays,

an Overview of Pointers

Linked Lists: Introduction to Lists and Linked Lists, Dynamic Memory Allocation, Basic

Linked List Operations, Doubly Linked List, Circular Linked List, Atomic Linked List, Linked

List in Arrays, Linked List versus Arrays

Definition of Linear Data Structure

 The data structure is considered to be linear if the data elements construct a
sequence of a linear list. The elements are adjacently attached to each other and in a
specified order. It consumes linear memory space, the data elements are required to store

in a sequential manner in the memory. While implementing the linear data structure the
necessary amount of memory is declared previously. It does not make a good utilization of
memory and result in memory wastage. The data elements are visited sequent ially where
only a single element can be directly reached.

 The examples included in the linear data structure are array, stack, queue, linked
list, etc. An array is a group of a definite number of homogeneous elements or data
items. Stack and queue are also an ordered collection of the elements like an array but
there is a special condition where stack follows LIFO (Last in first out) order and queue

employ FIFO (First in first out) to insert and delete the elements. Lists can be defined as a
set of variable number data items.

Definition of Non-linear Data Structure

 Non-linear data structure does not arrange the data consecutively rather it is
arranged in sorted order. In this, the data elements can be attached to more than one

element exhibiting the hierarchical relationship which involves the relationship between the
child, parent, and grandparent. In the non-linear data structure, the traversals of data
elements and insertion or deletion are not done sequentially.

 The non-linear data structure utilizes the memory efficiently and does not require the
memory declaration in advance. There are the two common examples of the non-linear data
structure – tree and graph. A tree data structure organizes and stores the data elements in
a hierarchical relationship.

Comparison:

BASIS FOR

COMPARISON
LINEAR DATA STRUCTURE

NON-LINEAR DATA

STRUCTURE
Basic The data items are arranged in an

orderly manner where the elements are

attached adjacently.

It arranges the data in a sorted

order and there exists a relationship

between the data elements.

Traversing of the
data

The data elements can be accessed in
one time (single run).

Traversing of data elements in one
go is not possible.

Ease of
implementation

Simpler Complex

Levels involved Single level Multiple level

Examples Array, queue, stack, linked list, etc. Tree and graph.

Memory utilization Ineffective Effective

Arrays:

An array is a collection of one or more values of the same type. Each value is called an

element of the array. The elements of the array share the same variable name but each

element has its own unique index number (also known as a subscript). An array can be of

any type, For example: int, float, char etc. If an array is of type int then it's elements must

be of type int only.

Syntax

The syntax is as follows for declaring an array −

datatype array_name [size];

Types of arrays

Arrays are broadly classified into three types. They are as follows −

One – dimensional arrays

Two – dimensional arrays

Multi – dimensional arrays

One – dimensional array
The Syntax is as follows −

datatype array name [size]

For example, int a[5]

Initialization

An array can be initialized in two ways, which are as follows −

Compile time initialization

Runtime initialization

Example

Following is the C program on compile time initialization −

 #include<stdio.h>

 int main ()

 {

 int a[5] = {10,20,30,40,50};

 int i;

 printf ("elements of the array are");

 for (i=0; i<5; i++)

 printf ("%d", a[i]);

 }

Output

Upon execution, you will receive the following output −

Elements of the array are

10 20 30 40 50

Example

Following is the C program on runtime initialization −

 #include<stdio.h>

 main ()

 {

 int a[5],i;

 printf ("enter 5 elements");

 for (i=0; i<5; i++)

 scanf("%d", &a[i]);

 printf("elements of the array are");

 for (i=0; i<5; i++)

 printf("%d", a[i]);

 }

Output

The output is as follows −

enter 5 elements 10 20 30 40 50

elements of the array are : 10 20 30 40 50

Note

The output of compile time initialized program will not change during different runs of the

program.

The output of run time initialized program will change for different runs because, user is

given a chance of accepting different values during execution.

Example

Following is another C program for one dimensional array −

 #include <stdio.h>

 int main(void)

{

 int a[4];

 int b[4] = {1};

 int c[4] = {1,2,3,4};

 int i; //for loop counter

 //printing all elements of all arrays

 printf("\nArray a:\n");

 for(i=0; i<4; i++)

 printf("arr[%d]: %d ",i,a[i]);

 printf("\nArray b:\n");

 for(i=0; i<4; i++)

 printf("\narr[%d]: %d",i,b[i]);

 printf("\nArray c:\n");

 for(i=0; i<4; i++)

 printf("arr[%d]: %d ",i, c[i]);

 return 0;

}

Output

The output is stated below −

Array a:

arr[0]: 8 arr[1]: 0 arr[2]: 54 arr[3]: 0

Array b:

arr[0]: 1 arr[1]: 0 arr[2]: 0 arr[3]: 0

Array c:

arr[0]: 1 arr[1]: 2 arr[2]: 3 arr[3]: 4

Array Operations:

Basic Operations:Following are the basic operations supported by an array.

 Traverse − print all the array elements one by one.

 Insertion − Adds an element at the given index.
 Deletion − Deletes an element at the given index.
 Search − Searches an element using the given index or by the value.
 Update − Updates an element at the given index.

In C, when an array is initialized with size, then it assigns defaults values to its elements in

following order.

Data Type Default Value

bool false

char 0

int 0

float 0.0

double 0.0f

void

wchar_t 0

Traverse Operation

This operation is to traverse through the elements of an array.

Example:Following program traverses and prints the elements of an array:

#include <stdio.h>
main() {

 int LA[] = {1,3,5,7,8};
 int item = 10, k = 3, n = 5;
 int i = 0, j = n;
 printf("The original array elements are :\n");
 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);
 }
}

When we compile and execute the above program, it produces the following result −
Output
The original array elements are :
LA[0] = 1
LA[1] = 3

LA[2] = 5
LA[3] = 7
LA[4] = 8

Insertion Operation

Insert operation is to insert one or more data elements into an array. Based on the

requirement, a new element can be added at the beginning, end, or any given index of
array.

Here, we see a practical implementation of insertion operation, where we add data at the
end of the array −
Example
Following is the implementation of the above algorithm −

#include <stdio.h>

main() {
 int LA[] = {1,3,5,7,8};
 int item = 10, k = 3, n = 5;

 int i = 0, j = n;
 printf("The original array elements are :\n");
 for(i = 0; i<n; i++)
 {
 printf("LA[%d] = %d \n", i, LA[i]);
 }

 n = n + 1;
 while(j >= k)
{
 LA[j+1] = LA[j];
 j = j - 1;

 }
 LA[k] = item;
 printf("The array elements after insertion :\n");
 for(i = 0; i<n; i++) {
 printf("LA[%d] = %d \n", i, LA[i]);

 }
}

When we compile and execute the above program, it produces the following result −

Output
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8
The array elements after insertion : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 10 LA[4] = 7
LA[5] = 8

For other variations of array insertion operation click here

Deletion Operation

Deletion refers to removing an existing element from the array and re-organizing all
elements of an array.
Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.
Following is the algorithm to delete an element available at the Kth position of LA.
 1. Start
 2. Set J = K
 3. Repeat steps 4 and 5 while J < N

 4. Set LA[J] = LA[J + 1]
 5. Set J = J+1
 6. Set N = N-1
 7. Stop
Example

https://www.tutorialspoint.com/data_structures_algorithms/array_insertion_algorithm.htm

Following is the implementation of the above algorithm −

#include <stdio.h>

void main() {
 int LA[] = {1,3,5,7,8};
 int k = 3, n = 5;
 int i, j;

 printf("The original array elements are :\n");

 for(i = 0; i<n; i++) {
 printf("LA[%d] = %d \n", i, LA[i]);

 }
 j = k;
 while(j < n) {
 LA[j-1] = LA[j];
 j = j + 1;

 }
 n = n -1;
 printf("The array elements after deletion :\n");
 for(i = 0; i<n; i++) {
 printf("LA[%d] = %d \n", i, LA[i]);
 }

}

When we compile and execute the above program, it produces the following result −

Output
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8
The array elements after deletion : LA[0] = 1 LA[1] = 3 LA[2] = 7 LA[3] = 8

Search Operation

You can perform a search for an array element based on its value or its index.
Algorithm
Consider LA is a linear array with N elements and K is a positive integer such that K<=N.
Following is the algorithm to find an element with a value of ITEM using sequential search.
 1. Start
 2. Set J = 0

 3. Repeat steps 4 and 5 while J < N
 4. IF LA[J] is equal ITEM THEN GOTO STEP 6
 5. Set J = J +1
 6. PRINT J, ITEM
 7. Stop

Example
Following is the implementation of the above algorithm −

#include <stdio.h>

void main() {
 int LA[] = {1,3,5,7,8};
 int item = 5, n = 5;
 int i = 0, j = 0;
 printf("The original array elements are :\n");

 for(i = 0; i<n; i++) {
 printf("LA[%d] = %d \n", i, LA[i]);
 }

 while(j < n){
 if(LA[j] == item) {
 break;
 }
 j = j + 1;

 }

 printf("Found element %d at position %d\n", item, j+1);
}

When we compile and execute the above program, it produces the following result −

Output

The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8
Found element 5 at position 3

Update Operation

Update operation refers to updating an existing element from the array at a given index.
Algorithm
Consider LA is a linear array with N elements and K is a positive integer such that K<=N.

Following is the algorithm to update an element available at the Kth position of LA.
 1. Start
 2. Set LA[K-1] = ITEM
 3. Stop
Example

Following is the implementation of the above algorithm −

#include <stdio.h>

void main()
{
 int LA[] = {1,3,5,7,8};
 int k = 3, n = 5, item = 10;

 int i, j;
 printf("The original array elements are :\n");
 for(i = 0; i<n; i++) {
 printf("LA[%d] = %d \n", i, LA[i]);
 }

 LA[k-1] = item;
 printf("The array elements after updation :\n");
 for(i = 0; i<n; i++) {
 printf("LA[%d] = %d \n", i, LA[i]);
 }

}

When we compile and execute the above program, it produces the following result −

Output

The original array elements are :LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8
The array elements after updation :LA[0] = 1 LA[1] = 3 LA[2] = 10 LA[3] = 7 LA[4] = 8

Two- Dimensional arrays:

The simplest form of multidimensional array is the two-dimensional array. A two-
dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-
dimensional integer array of size [x][y], you would write something as follows −

 type arrayName [x][y];

Where type can be any valid C data type and arrayName will be a valid C identifier. A two-
dimensional array can be considered as a table which will have x number of rows and y

number of columns. A two-dimensional array a, which contains three rows and four
columns can be shown as follows −

Thus, every element in the array a is identified by an element name of the form a[i][j],

where 'a' is the name of the array, and 'i' and 'j' are the subscripts that uniquely identify
each element in 'a'.

Initializing Two-Dimensional Arrays

Multidimensional arrays may be initialized by specifying bracketed values for each row.

Following is an array with 3 rows and each row has 4 columns.

int a[3][4] = {
 {0, 1, 2, 3} , /* initializers for row indexed by 0 */

 {4, 5, 6, 7} , /* initializers for row indexed by 1 */
 {8, 9, 10, 11} /* initializers for row indexed by 2 */
};

The nested braces, which indicate the intended row, are optional. The following
initialization is equivalent to the previous example −

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Accessing Two-Dimensional Array Elements

An element in a two-dimensional array is accessed by using the subscripts, i.e., row index
and column index of the array. For example −

 int val = a[2][3];

The above statement will take the 4th element from the 3rd row of the array. You can
verify it in the above figure. Let us check the following program where we have used a

nested loop to handle a two-dimensional array −

#include <stdio.h>
 int main () {

 /* an array with 5 rows and 2 columns*/
 int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};
 int i, j;

 /* output each array element's value */

 for (i = 0; i < 5; i++) {
 for (j = 0; j < 2; j++) {
 printf("a[%d][%d] = %d\n", i,j, a[i][j]);
 }
 }

 return 0;
}

When the above code is compiled and executed, it produces the following result −

a[0][0]: 0 a[0][1]: 0 a[1][0]: 1 a[1][1]: 2 a[2][0]: 2 a[2][1]: 4 a[3][0]: 3
a[3][1]: 6 a[4][0]: 4 a[4][1]: 8

As explained above, you can have arrays with any number of dimensions, although it is

likely that most of the arrays you create will be of one or two dimensions.

Multidimensional Arrays:

Array Declaration

A multidimensional array is declared using the following syntax:

type array_name[d1][d2][d3][d4]………[dn];

Example

int table[5][5][20];

int designates the array type integer. table is the name of our 3D array.

Our array can hold 500 integer-type elements. This number is reached by multiplying the

value of each dimension. In this case: 5x5x20=500.

 float arr[5][6][5][6][5];

Array arr is a five-dimensional array.

It can hold 4500 floating-point elements (5x6x5x6x5=4500).

Can you see the power of declaring an array over variables? When it comes to

holding multiple values in C programming, we would need to declare several variables. But

a single array can hold thousands of values.

Note: For the sake of simplicity, this tutorial discusses 3D arrays only. Once you grab

the logic of how the 3D array works then you can handle 4D arrays and larger.

Explanation of a 3D Array

Let's take a closer look at a 3D array. A 3D array is essentially an array of arrays of

arrays: it's an array or collection of 2D arrays, and a 2D array is an array of 1D array.

It may sound a bit confusing, but don't worry. As you practice working with

multidimensional arrays, you start to grasp the logic.

The diagram below may help you understand:

Three Dimensional Array in c programming language

Address and view

Three Dimensional Array in c programming language

Initializing a 3D Array in C

Like any other variable or array, a 3D array can be initialized at the time of compilation. By

default, in C, an uninitialized 3D array contains “garbage” values, not valid for the intended

use.

Let’s see a complete example on how to initialize a 3D array:

Syntax:

void main()

{

int i, j, k;

int arr[3][3][3]=

 {

 {

 {11, 12, 13},

 {14, 15, 16},

 {17, 18, 19}

 },

 {

 {21, 22, 23},

 {24, 25, 26},

 {27, 28, 29}

 },

 {

 {31, 32, 33},

 {34, 35, 36},

 {37, 38, 39}

 },

 };

printf(":::3D Array Elements:::\n\n");

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 {

 for(k=0;k<3;k++)

 {

 printf("%d\t",arr[i][j][k]);

 }

 printf("\n");

 }

 printf("\n");

}

getch();

}

:::3D Array Elements:::

11 12 13

14 15 16

17 18 19

21 22 23

24 25 26

27 28 29

31 32 33

34 35 36

37 38 39

In the code above we have declared a multidimensional integer array named “arr” which

can hold 3x3x3 (or 27) elements.

Pointers and Arrays:

Before you start with Pointer and Arrays in C, learn about these topics in prior:
 Array in C
 Pointer in C

When an array in C language is declared, compiler allocates sufficient memory to contain all
its elements. Its base address is also allocated by the compiler.
Declare an array arr,

int arr[5] = { 1, 2, 3, 4, 5 };
Suppose the base address of arr is 1000 and each integer requires two bytes, the five
elements will be stored as follows:

Variable arr will give the base address, which is a constant pointer pointing to arr[0].

Hence arr contains the address of arr[0] i.e 1000.
arr has two purpose -

 It is the name of the array
 It acts as a pointer pointing towards the first element in the array.

arr is equal to &arr[0] by default
For better understanding of the declaration and initialization of the pointer - click here. and

refer to the program for its implementation.
NOTE:

 You cannot decrement a pointer once incremented. p-- won't work.

https://www.studytonight.com/c/arrays-in-c.php
https://www.studytonight.com/c/pointers-in-c.php
https://www.studytonight.com/c/arrays-in-c.php
https://www.studytonight.com/c/pointers-in-c.php
https://www.studytonight.com/c/pointers-in-c.php
https://www.studytonight.com/c/programs/pointer/simple-pointer-program

Pointer to Array
Use a pointer to an array, and then use that pointer to access the array elements. For
example,

#include<stdio.h>
void main()
{
 int a[3] = {1, 2, 3};
 int *p = a;

 for (int i = 0; i < 3; i++)
 {
 printf("%d", *p);
 p++;
 }
 return 0;

}

1 2 3

Syntax:
*(a+i) //pointer with an array
is same as: a[i]

Pointer to Multidimensional Array
Let's see how to make a pointer point to a multidimensional array. In a[i][j], a will give the
base address of this array, even a + 0 + 0 will also give the base address, that is the
address of a[0][0] element.
Syntax:
((a + i) + j)

Pointer and Character strings

Pointer is used to create strings. Pointer variables of char type are treated as string.
 char *str = "Hello";
The above code creates a string and stores its address in the pointer variable str. The
pointer str now points to the first character of the string "Hello".

 The string created using char pointer can be assigned a value at runtime.

 char *str;
 str = "hello";

https://www.studytonight.com/c/pointer-to-pointer.php

 The content of the string can be printed using printf() and puts().
 printf("%s", str);
 puts(str);

 str is a pointer to the string and also name of the string. Therefore we do not need to
use indirection operator *.

Array of Pointers
Pointers are very helpful in handling character arrays with rows of varying lengths.
char *name[3] = {

 "Adam",
 "chris",
 "Deniel"
};
//without pointer
char name[3][20] = {

 "Adam",
 "chris",
 "Deniel"
};

In the second approach memory wastage is more, hence it is preferred to use pointer in
such cases.

An Overview of Pointers

Introduction to Pointers
Pointer is a fundamental part of C. If you cannot use pointers properly then you have
basically lost all the power and flexibility that C allows. The secret to C is in its use of
pointers. C uses pointers a lot because:

 It is the only way to express some computations.
 It produces compact and efficient code.
 Pointers provided an easy way to represent multidimensional arrays.
 Pointers increase the execution speed.
 Pointers reduce the length and complexity of program.

https://www.studytonight.com/c/pointers-in-c.php

C uses pointers explicitly with arrays, structures and functions.
A pointer is a variable which contains the address in memory of another variable. We can
have a pointer to any variable type.

The unary operator & gives the “address of a variable''. The indirection or dereference
operator * gives the “contents of an object pointed to by a pointer''.

Declaring Pointer Variables
 The general syntax of pointer declaration is,

 datatype *pointer_name;
The data type of the pointer and the variable to which the pointer variable is pointing must
be the same.
Example
 int *pointer;
 float *p;

 char *x;
We must associate a pointer to a particular type. We can't assign the address of a short int
to a long int.
Initialization of C Pointer variable
Pointer Initialization is the process of assigning address of a variable to a pointer variable. It

contains the address of a variable of the same data type. In C language address operator &
is used to determine the address of a variable. The & (immediately preceding a variable
name) returns the address of the variable associated with it.

int a = 10;

int *ptr; //pointer declaration
ptr = &a; //pointer initialization

Pointer variable always points to variables of the same datatype. For example:

float a;
int *ptr = &a; // ERROR, type mismatch
Consider the effect of the following code:
#include <stdio.h>
main()

{
int x = 1, y = 2;
int *ip;
ip = &x;
y = *ip;

*ip = 3;
}

It is worth considering what is going on at the machine level in memory to fully
understand how pointer works. Assume for the sake of this discussion that variable x
resides at memory location 100, y at 200 and ip at 1000 shown in figure 4.1.

int x = 1, y = 2;
int *ip;
ip = &x ;

y ip

100 200 1000

x 1 2 100

100

100

200

200

1000

1000

x

x

y

y

ip

ip

1

3

1

1

100

100

y = *ip;

*ip = 3;

Fig. 4. 1 Po int er, Variab le s and Me mory

Now the assignments x = 1 and y = 2 obviously load these values into the variables.

ip is declared to be a pointer to an integer and is assigned to the address of x (&x). So ip
gets loaded with the value 100.

Next y gets assigned to the contents of ip. In this example ip currently points to

memory location 100 -- the location of x. So y gets assigned to the values of x -- which is 1.
Finally, we can assign a value 3 to the contents of a pointer (*ip).

IMPORTANT: When a pointer is declared it does not point anywhere. You must set
it to point somewhere before you use it. So,

int *ip;

*ip = 100;
 will generate an error (program crash!!). The correct usage is:
int *ip;
int x;
ip = &x;

*ip = 100;
++ip;

Pointer Expressions and Pointer Arithmetic
In general, expressions involving pointers conform to the same rules as other expressions.
This section examines a few special aspects of pointer expressions, such as assignments,

conversions, and arithmetic.
Pointer Assignments
You can use a pointer on the right-hand side of an assignment statement to assign its value
to another pointer. When both pointers are the same type, the situation is straightforward.
For example:

int s = 56;

int *ptr1, *ptr2;
ptr1 = &s;
ptr2 = ptr1;

Program
#include <stdio.h>

int main(void)
{

int s = 56;
int *ptr1, *ptr2;
ptr1 = &s;

ptr2 = ptr1;
/* print the value of s twice */
printf("Values at ptr1 and ptr2: %d %d \n", *ptr1, *ptr2);

/* print the address of s twice */
printf("Addresses pointed to by ptr1 and ptr2: %p %p",ptr1,ptr2);
return 0;

}
Output
Values at ptr1 and ptr2: 56 56
Addresses pointed to by ptr1 and ptr2: 0240FF20 0240FF20
Pointer Arithmetic

We can perform addition and subtraction of integer constant from pointer variable.
Addition

ptr1 = ptr1 + 2;
subtraction

ptr1 = ptr1 - 2;
We can not perform addition, multiplication and division operations on two pointer variables.

For Example:
ptr1 + ptr2 is not valid

However we can subtract one pointer variable from another pointer variable. We can use
increment and decrement operator along with pointer variable to increment or decrement
the address contained in pointer variable.

For Example:
ptr1++;
ptr2--;

Multiplication
Example:

int x = 10, y = 20, z;
int *ptr1 = &x;
int *ptr2 = &y;
z = *ptr1 * *ptr2 ;
Will assign 200 to variable z.

Division
there is a blank space between '/' and * because the symbol /*is considered as beginning of
the comment and therefore the statement fails.
 Z=5*-*Ptr2/ *Ptr1;
If Ptr1 and Ptr2 are properly declared and initialized pointers, then the following statements

are valid:
Y=*Ptr1**Ptr2;
Sum=sum+*Ptr1;
*Ptr2=*Ptr2+10;
*Ptr1=*Ptr1+*Ptr2;
*Ptr1=*Ptr2-*Ptr1;

if Ptr1 and Ptr2 are properly declared and initialized pointers then, 'C' allows adding integers

to a pointer variable.
EX:

int a=5, b=10;
int *Ptr1,*Ptr2;
Ptr1=&a;

Ptr2=&b
If Ptr1 & Ptr2 are properly declared and initialized, pointers then 'C' allows to subtract
integers from pointers. From the above example,

If Ptr1 & Ptr2 are properly declared and initialize pointers, and both points to the elements
of the same type. "Subtraction of one pointer from another pointer is also possible".
NOTE: this operation is done when both pointer variable points to the elements of the same
array.
EX:

P2- P1 (It gives the number of elements between p1 and p2)
Pointer Increment and Scale Factor
We can use increment operator to increment the address of the pointer variable so that it
points to next memory location.
 The value by which the address of the pointer variable will increment is not fixed. It

depends upon the data type of the pointer variable.
 For Example:
 int *ptr;
 ptr++;

 It will increment the address of pointer variable by 2. So if the address of pointer

variable is 2000 then after increment it becomes 2002.
Thus the value by which address of the pointer variable increments is known as scale factor.
The scale factor is different for different data types as shown below:

Char 1 Byte

Int 2 Byte

Short int 2 Byte

Long int 4 Byte

Float 4 Byte

Dou ble 8 Byte

Long double 10 Byte

Write a C program to compute the sum of all elements stored in an array Using

pointers.
Program
/*program to compute sum of all elements stored in an array */
#include<stdio.h>
#include<conio.h>

main ()

{
 int a [10], i, sum=0,*p;
 printf ("enter 10 elements \n");

 for (i=0; i<10; i++)
 scanf ("%d", & a[i]);
 p = a;
 for (i = 0; i<10; i++)
 {

 sum = sum+(*p);
 p++;
 }
 printf ("the sum is % d", sum);
 getch ();
}

Output
enter 10 elements
1
2
3

4
5
6
7
8

9
10
the sum is 55
Write a C program using pointers to determine the length of a character String.
Program

/*program to find the length of a char string */
#include<stdio.h>
#include<conio.h>
main ()
{

 char str[20], *ptr ;
 int l=0;
 printf("enter a string \n");
 scanf("%s", str);
 ptr=str;
 while(*ptr!='\0')

 {
 l++;
 ptr++;
 }
 printf("the length of the given string is %d \n", l);

 }
Output
enter a string
atnyla.com

the length of the given string is 10
Press any key to continue .

Null Pointers
While declaring a pointer variable, if it is not assigned to anything then it contains

garbage value. Therefore, it is recommended to assign a NULL value to it,

A pointer that is assigned a NULL value is called a NULL pointer in C

 NULL Pointer is a pointer which is pointing to nothing.
 The NULL pointer points the base address of the segment.
 In case, if you don’t have an address to be assigned to a pointer then you can simply

use NULL
 The pointer which is initialized with the NULL value is considered as a NULL pointer.
 NULL is a macro constant defined in following header files –

stdio.h, alloc.h, mem.h, stddef.h, stdlib.h
Defining NULL Value
#define NULL 0

Below are some of the variable representations of a NULL pointer.
float *ptr = (float *)0;
char *ptr = (char *)0;
double *ptr = (double *)0;
char *ptr = '\0';

int *ptr = NULL;
Example of NULL Pointer
#include <stdio.h>
int main()
{

 int *ptr = NULL;
 printf("The value of ptr is %u",ptr);
 return 0;
}
Output :

The value of ptr is 0

Generic Pointers
When a variable is declared as being a pointer to type void, it is known as a generic
pointer. Since you cannot have a variable of type void, the pointer will not point to any data

and therefore cannot be dereferenced. It is still a pointer though, to use it you just have to
cast it to another kind of pointer first. Hence the term Generic pointer.
This is very useful when you want a pointer to point to data of different types at different
times.
Void pointer is a specific pointer type – void * – a pointer that points to some data location
in storage, which doesn’t have any spec ific type. Void refers to the type. Basically the type

of data that it points to is can be any. If we assign address of char data type to void pointer
it will become char Pointer, if int data type then int pointer and so on. Any pointer type is
convertible to a void pointer hence it can point to any value.
Why Void Pointers is important

https://www.studytonight.com/c/programs/pointer/null-pointer-program

1. Suppose we have to declare integer pointer, character pointer and float pointer then
we need to declare 3 pointer variables.

2. Instead of declaring different types of pointer variable it is feasible to declare single

pointer variable which can act as an integer pointer, character pointer.
Declaration of Void Pointer
 void * pointer_name;
Void Pointer Example :
 void *ptr; // ptr is declared as Void pointer

 char c;
 int i;
 float f;
 ptr = &c; // ptr has address of character data
 ptr = &i; // ptr has address of integer data
 ptr = &f; // ptr has address of float data

Explanation :
void *ptr;

1. Void pointer declaration is shown above.
2. We have declared 3 variables of integer, character and float type.
3. When we assign the address of the integer to the void pointer, the pointer will

become Integer Pointer.
4. When we assign the address of Character Data type to void pointer it will become

Character Pointer.
5. Similarly, we can assign the address of any data type to the void pointer.
6. It is capable of storing the address of any data type

Example of Generic Pointer
Here is some code using a void pointer:
#include<stdlib.h>
 int main()
{

 int x = 4;
 float y = 5.5;
 //A void pointer
 void *ptr;
 ptr = &x;

 // (int*)ptr - does type casting of void
 // *((int*)ptr) dereferences the typecasted
 // void pointer variable.
 printf("Integer variable is = %d", *((int*) ptr));
 // void pointer is now float
 ptr = &y;

 printf("\nFloat variable is= %f", *((float*) ptr));
 return 0;
}
Another Example
#include"stdio.h"

int main()
{
 int i;
 char c;
 void *the_data;

 i = 6;
 c = 'a';
 the_data = &i;

 printf("the_data points to the integer value %d\n", *(int*) the_data);
 the_data = &c;
 printf("the_data now points to the character %c\n", *(char*) the_data);

 return 0;
}
Passing Arguments to Functions using Pointer

A function has a physical location in memory that can be assigned to a pointer. This
address is the entry point of the function and it is the address used when the function is

called. Once a pointer points to a function, the function can be called through that pointer.
Function pointers also allow functions to be passed as arguments to other functions.

Pointer as a function parameter list is used to hold the address of argument passed
during the function call. This is also known as call by reference. When a function is called by
reference any change made to the reference variable will affect the original variable.

Program
#include<stdio.h>
void swap(int *a, int *b); // function prototype
int main()
{

 int p=10, q=20;
 printf("Before Swapping:\n\n");
 printf("p = %d\n",p);
 printf("q = %d\n\n",q);
 swap(&p,&q); //passing address of p and q to the swap function

 printf("After Swapping:\n\n");
 printf("p = %d\n",p);
 printf("q = %d\n",q);
 return 0;
}

//pointer a and b holds and points to the address of p and q
void swap(int *a, int *b)
{
 int temp;

 temp = *a;
 *a = *b;
 *b = temp;
}
Output
Before Swapping:

p = 10
q = 20

After Swapping:
p = 20

q = 10
Press any key to continue . . .
The address of memory location m and n are passed to the function swap and the pointers
*a and *b accept those values.
So, now the pointer a and b points to the address of m and n respectively.

When, the value of pointers are changed, the value in the pointed memory location also
changes correspondingly.
Hence, changes made to*a and *bare reflected in m and n in the main function.

This technique is known as Call by Reference in C programming.
Simple Example of Pointer to Function
Program

#include<stdio.h>
int add(int x, int y)
{
 return x+y;
}

int main()
{
 int (*functionPtr)(int, int);
 int s;
 functionPtr = add; //

 s = functionPtr(20, 45);
 printf("Sum is %d",s);
 getch();
 return 0;
}

Output
Sum is 65
Explanation
It is possible to declare a pointer pointing to a function which can then be used as an
argument in another function. A pointer to a function is declared as follows,

 type (*pointer-name)(parameter);

Example :

int (*add)(); //legal declaration of pointer to function

int *add(); //This is not a declaration of pointer to function

A function pointer can point to a specific function when it is assigned the name of the
function.

int add(int, int);

int (*s)(int, int);
sr = add;

sr is a pointer to a function sum. Now sum can be called using function pointer s with the
list of parameter.

sr(10, 20);
Function returning Pointer

A function can also return a pointer to the calling function. In this case you must be careful,
because local variables of function doesn't live outside the function. They have scope only
till inside the function. Hence if you return a pointer connected to a local variable, that
pointer be will pointing to nothing when function ends.
Program

This program will check who is larger among two number, it is not for quality checking
#include<stdio.h>
int* checklarger(int*, int*);
void main()
{

 int num1 ;
 int num2;
 int *ptr;

 printf("Enter Two number: \n");
 scanf("%d %d",&num1,&num2);
 ptr = checklarger(&num1, &num2);

 printf("%d is larger \n",*ptr);
}

int* checklarger(int *m, int *n)
{

 if(*m > *n)
 return m;
 else
 return n;
}
Output

Enter Two number:
546 1213

1213 is larger

Address of the Function

We can fetch the address of an array by the array name, without indexes, Similarly We can
fetch the address of a function by using the function's name without any parentheses or
arguments. To see how this is done, read the following program, which compares two
strings entered by the user. Pay close attention to the declarations of checkString() and the
function pointer p, inside main().

#include<stdio.h>
void checkString(char *a, char *b,
int (*cmp)(const char *, const char *));
int main(void)

{
 char strng1[80], strng2[80];
 int (*ptr)(const char *, const char *); /* function pointer */
 ptr = strcmp; /* assign address of strcmp to ptr */
 printf("Enter two strings.\n");

 gets(strng1);
 gets(strng2);
 checkString(strng1,strng2,ptr); /* pass address of strcmp via ptr */
 return 0;
}

void checkString(char *m, char *n,
int (*cmp) (const char *, const char *))
{
 printf("Testing for equality.\n");
 if(!(*cmp)(m, n))

{
printf("Equal \n");

 }
 Else

{

 printf("Not Equal \n");
 }
}

Output 1:
Enter two strings.

atnyla

atnyla
Testing for equality.
Equal

Output 2:

Enter two strings.
atnyla
atnlla
Testing for equality.
Not Equal
Press any key to continue . . .

Explanation
First, examine the declaration for ptr in main(). It is shown here:
 int (*ptr)(const char *, const char *);
 This declaration tells the compiler that ptr is a pointer to a function that has two
const char * parameters, and returns an int result. The parentheses around ptr are

necessary in order for the compiler to properly interpret this declaration. You must use a
similar form when declaring other function pointers, although the return type and
parameters of the function may differ.
 void checkString(char *m, char *n,
int (*cmp) (const char *, const char *))

 Next, examine the checkString() function. It declares three parameters: two
character pointers, m and n, and one function pointer, cmp. Notice that the function pointer
is declared using the same format as was ptr inside main(). Thus, cmp is able to receive a
pointer to a function that takes two const char * arguments and returns an int result. Like
the declaration for ptr, the parentheses around the *cmp are necessary for the compiler to

interpret this statement correctly.
 When the program begins, it assigns ptr the address of strcmp(), the standard
string comparison function. Next, it prompts the user for two strings, and then it passes
pointers to those strings along with ptr to check(), which compares the strings for equality.
Inside checkString(), the expression

 (*cmp)(a, b)
 calls strcmp(), which is pointed to by cmp, with the arguments m and n. The
parentheses around *cmp are necessary. This is one way to call a function through a
pointer. A second, simpler syntax, as shown here, can also be used.
 cmp(a, b);
 The reason that you will frequently see the first style is that it tips off anyone reading

your code that a function is being called through a pointer (that is, that cmp is a function
pointer, not the name of a function). Also, the first style was the form originally specified by
C.
Note that you can call checkString() by using strcmp() directly, as shown here:
 checkString(s1, s2, strcmp);

Pointer and Arrays
There is a close association between pointers and arrays. Let us consider the following
statements:
 int x[5] = {11, 22, 33, 44, 55};
 int *p = x;

 The array initialization statement is familiar to us. The second statement, array name
x is the starting address of the array. Let we take a sample memory map as shown in figure
4.2.:

 From the figure 4.2 we can see that the starting address of the array is 1000. When
x is an array, it also represents an address and so there is no need to use the (&) symbol
before x. We can write int *p = x in place of writing int *p = &x[0].
 The content of p is 1000 (see the memory map given below). To access the value in
x[0] by using pointers, the indirection operator * with its pointer variable p by the notation

*p can be used.

 The increment operator ++ helps you to increment the value of the pointer variable
by the size of the data type it points to. Therefore, the expression p++ will increment p by
2 bytes (as p points to an integer) and new value in p will be 1000 + 2 = 1002, now *p will
get you 22 which is x[1].
Consider the following expressions:

 *p++;
 *(p++);
 (*p)++;
How would they be evaluated when the integers 10 & 20 are stored at addresses 1000 and
1002 respectively with p set to 1000.

p++ : The increment ++ operator has a higher priority than the indirection operator * .
Therefore p is increment first. The new value in p is then 1002 and the content at
this address is 20.

*(p++): is same as *p++.
(*p)++: *p which is content at address 1000 (i.e. 10) is incremented. Therefore (*p)++ is

11.
Note that, *p++ = content at incremented address.
Example:
#include <stdio.h>
main()

{
 int x[5] = {11, 22, 33, 44, 55};
 int *p = x, i; /* p=&x[0] = address of the first element */
 for (i = 0; i < 5; i++)
 {

Me mory

1008 55 x[4]

1006 44 x[3]

1004 33 x[2]

1002 22 x[1]

1000 11 x[0]

1010

F igure 4. 2. Me mory map - Array s

 printf (“\n x[%d] = %d”, i, *p); /* increment the address*/
p++;

}

}
Output:
x [0] = 11
x [1] = 22
x [2] = 33

x [3] = 44
x [4] = 55
The meanings of the expressions p, p+1, p+2, p+3, p+4 and the expressions *p, *(p+1),
*(p+2), *(p+3), *(p+4) are as follows:

P = 1000
P+1 = 1000 + 1 x 2 = 1002
P+2 = 1000 + 2 x 2 = 1004
P+3 = 1000 + 3 x 2 = 1006
P+4 = 1000 + 4 x 2 = 1008

*p = content at address 1000 = x[0]
*(p+1) = content at address 1002 = x[1]
*(p+2) = content at address 1004 = x[2]
*(p+3) = content at address 1006 = x[3]
*(p+4) = content at address 1008 = x[4]

Pointers and strings:
A string is an array of characters. Thus pointer notation can be applied to the characters in
strings. Consider the statements:

char tv[20] = “ONIDA”;

char *p = tv;
For the first statement, the compiler allocates 20 bytes of memory and stores in the first six
bytes the char values as shown below:

Address 1000 1001 1002 1003 1004 1005

Variable tv[0] tv[1] tv[2] tv[3] tv[4] tv[5]

Value ‘O ’ ‘N’ ‘ I’ ‘D’ ‘A’ ‘\ 0’

The statement:

char *p = tv; /* or p = &tv[0] */

Assigns the address 1000 to p. Now, we will write a program to find the length of the string
tv and print the string in reverse order using pointer notation.
Example:
#include <stdio.h>
main()
{

int n, i;
char tv[20] = “ONIDA”; /* p = 1000 */
char *p = tv, *q; /* p = &tv[0], q is a pointer */
q = p;
while (*p != ‘\0’) /* content at address of p is not null character */

p++;
n = p - q; /* length of the string */
--p; /* make p point to the last character A in the string */
printf (“\nLength of the string is %d”, n);
printf (“\nString in reverse order: \n”);

for (i=0; i<n; i++)
{

putchar (*p);

p--;
}

}
Output:
Length of the string is 5

String in reverse order: ADINO

Linked Lists: Introduction to Lists and Linked Lists

 Linked lists and arrays are similar since they both store collections of data. One way

to think about linked lists is to look at how arrays work and think about alternate

approaches.

 Array is the most common data structure used to store collections of elements.

Arrays are convenient to declare and provide the easy syntax to access any element by its

index number. Once the array is set up, access to any element is convenient and fast.

The disadvantages of arrays are:

 • The size of the array is fixed. Most often this size is specified at compile time. This

makes the programmers to allocate arrays, which seems "large enough" than required.

 • Inserting new elements at the front is potentially expensive because existing

elements need to be shifted over to make room.

 • Deleting an element from an array is not possible.

Linked lists have their own strengths and weaknesses, but they happen to be strong where

arrays are weak. Generally array's allocates the memory for all its elements in one block

whereas linked lists use an entirely different strategy.

Linked lists allocate memory for each element separately and only when necessary.

Dynamic Memory Allocation:
The concept of dynamic memory allocation in c language enables the C programmer to
allocate memory at runtime. Dynamic memory allocation in c language is possible by 4

functions of stdlib.h header file.
1. malloc()
2. calloc()
3. realloc()
4. free()

Before learning above functions, let's understand the difference between static memory
allocation and dynamic memory allocation.

static memory allocation dynamic memory allocation
Memory is allocated at compile time. Memory is allocated at run time.

Memory can't be increased while executing
program.

Memory can be increased while executing
program.

Used in array. Used in linked list.

Now let's have a quick look at the methods used for dynamic memory allocation.

malloc() allocates single block of requested memory.

calloc() allocates multiple block of requested memory.

realloc() reallocates the memory occupied by malloc() or calloc() functions.

free() frees the dynamically allocated memory.
malloc() function in C

The malloc() function allocates single block of requested memory.
It doesn't initialize memory at execution time, so it has garbage value initially.
It returns NULL if memory is not sufficient.
The syntax of malloc() function is given below:
 ptr=(cast-type*)malloc(byte-size)

Let's see the example of malloc() function.
#include<stdio.h>
#include<stdlib.h>
 int main(){
 int n,i,*ptr,sum=0;

 printf("Enter number of elements: ");

 scanf("%d",&n);
 ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc
 if(ptr==NULL)

 {
 printf("Sorry! unable to allocate memory");
 exit(0);
 }
 printf("Enter elements of array: ");

 for(i=0;i<n;++i)
 {
 scanf("%d",ptr+i);
 sum+=*(ptr+i);
 }
 printf("Sum=%d",sum);

 free(ptr);
return 0;
}

Output
Enter elements of array: 3

Enter elements of array: 10
10
10
Sum=30

calloc() function in C
The calloc() function allocates multiple block of requested memory.

It initially initialize all bytes to zero.
It returns NULL if memory is not sufficient.
The syntax of calloc() function is given below:
 ptr=(cast-type*)calloc(number, byte-size)
Let's see the example of calloc() function.

#include<stdio.h>
#include<stdlib.h>
int main(){
 int n,i,*ptr,sum=0;
 printf("Enter number of elements: ");

 scanf("%d",&n);
 ptr=(int*)calloc(n,sizeof(int)); //memory allocated using calloc
 if(ptr==NULL)
 {
 printf("Sorry! unable to allocate memory");
 exit(0);

 }
 printf("Enter elements of array: ");
 for(i=0;i<n;++i)
 {
 scanf("%d",ptr+i);

 sum+=*(ptr+i);
 }
 printf("Sum=%d",sum);
 free(ptr);
return 0;

}

Output
Enter elements of array: 3
Enter elements of array: 10

10
10
Sum=30

realloc() function in C

If memory is not sufficient for malloc() or calloc(), you can reallocate the memory by
realloc() function. In short, it changes the memory size.
Let's see the syntax of realloc() function.
 ptr=realloc(ptr, new-size)

free() function in C
The memory occupied by malloc() or calloc() functions must be released by calling free()

function. Otherwise, it will consume memory until program exit.
Let's see the syntax of free() function.

 free(ptr)

Basic Linked List Operations:

 A linked list is a non-sequential collection of data items. It is a dynamic data
structure. For every data item in a linked list, there is an associated pointer that would give
the memory location of the next data item in the linked list.
 The data items in the linked list are not in consecutive memory locations. They may

be anywhere, but the accessing of these data items is easier as each data item contains the
address of the next data item.

Advantages of linked lists:
Linked lists have many advantages. Some of the very important advantages are:

1. Linked lists are dynamic data structures. i.e., they can grow or shrink during the
execution of a program.

2. Linked lists have efficient memory utilization. Here, memory is not pre-allocated.
Memory is allocated whenever it is required and it is de-allocated (removed)
when it is no longer needed.

3. Insertion and Deletions are easier and efficient. Linked lists provide flexibility in
inserting a data item at a specified position and deletion of the data item from
the given position.

4. Many complex applications can be easily carried out with linked lists.

Disadvantages of linked lists:
1. It consumes more space because every node requires a additional pointer to

store address of the next node.
2. Searching a particular element in list is difficult and also time consuming.

Types of Linked Lists:

Basically we can put linked lists into the following four items:

1. Single Linked List.
2. Double Linked List.
3. Circular Linked List.

4. Circular Double Linked List.

 A single linked list is one in which all nodes are linked together in some sequential
manner. Hence, it is also called as linear linked list.
 A double linked list is one in which all nodes are linked together by multiple links

which helps in accessing both the successor node (next node) and predecessor node
(previous node) from any arbitrary node within the list. Therefore each node in a double
linked list has two link fields (pointers) to point to the left node (previous) and the right
node (next). This helps to traverse in forward direction and backward direction.
 A circular linked list is one, which has no beginning and no end. A single linked list

can be made a circular linked list by simply storing address of the very first node in the link
field of the last node.
 A circular double linked list is one, which has both the successor pointer and
predecessor pointer in the circular manner.

Comparison between array and linked list:

ARRAY LINKED LIST

Size of an array is fixed Size of a list is not fixed

Memory is allocated from stack Memory is allocated from heap

It is necessary to specify the number of
elements during declaration (i.e., during

compile time).

It is not necessary to specify the
number of elements during declaration
(i.e., memory is allocated during run
time).

It occupies less memory than a linked

list for the same number of elements.
It occupies more memory.

Inserting new elements at the front is
potentially expensive because existing
elements need to be shifted over to
make room.

Inserting a new element at any position
can be carried out easily.

Deleting an element from an array is

not possible.
Deleting an element is possible.

Trade offs between linked lists and arrays:

FEATURE ARRAYS LINKED LISTS

Sequential access efficient efficient

Random access efficient inefficient

Resigning inefficient efficient

Element rearranging inefficient efficient

Overhead per elements none 1 or 2 inks

Applications of linked list:
1. Linked lists are used to represent and manipulate polynomial. Polynomials are

expression containing terms with non zero coefficient and exponents. For example:
P(x) = a0 X

n + a1 X
n-1 + …… + an-1 X + an

2. Represent very large numbers and operations of the large number such as addition,
multiplication and division.

3. Linked lists are to implement stack, queue, trees and graphs.

4. Implement the symbol table in compiler construction

Single Linked List:
 A linked list allocates space for each element separately in its own block of memory

called a "node". The list gets an overall structure by using pointers to connect all its nodes
together like the links in a chain.
 Each node contains two fields; a "data" field to store whatever element, and a "next"
field which is a pointer used to link to the next node.
 Each node is allocated in the heap using malloc(), so the node memory continues to
exist until it is explicitly de-allocated using free(). The front of the list is a pointer to the

“start” node. A single linked list is shown in figure 6.2.1.

100

10 200 20 300 30 400 40 X

100 200 300 400

sta rt

Figure 6. 2. 1. S ing le L inked L ist

 HEAP S TAC K

The next f ie ld of
the la st node is
NULL.

The st art
po int er
ho lds t he
addre s s of
the f irst
node of t he
l ist .

Each node
st ore s t he dat a.

Store s t he next
node addre s s.

 The beginning of the linked list is stored in a "start" pointer which points to the first
node. The first node contains a pointer to the second node. The second node contains a
pointer to the third node, ... and so on. The last node in the list has its next field set to

NULL to mark the end of the list. Code can access any node in the list by starting at the
start and following the next pointers.
 The start pointer is an ordinary local pointer variable, so it is drawn separately on
the left top to show that it is in the stack. The list nodes are drawn on the right to show that
they are allocated in the heap.

Implementation of Single Linked List:
 Before writing the code to build the above list, we need to create a start node, used
to create and access other nodes in the linked list. The following structure definition will do
(see figure 6.2.2):

 Creating a structure with one data item and a next pointer, which will be pointing
to next node of the list. This is called as self-referential structure.

 Initialise the start pointer to be NULL.

 NULL

sta rt

Figure 6. 2. 2. St ruc ture def in it ion, s ing le l ink node and e mpty l ist

Empty list:

struct s link list
{

int data;
struct s link list* next;

};

typedef st ruct s link list no de;

 no de *start = NULL;

 dat a ne xt node:

The basic operations in a single linked list are:

 Creation.
 Insertion.

 Deletion.
 Traversing.

Creating a node for Single Linked List:
 Creating a singly linked list starts with creating a node. Sufficient memory has to be
allocated for creating a node. The information is stored in the memory, allocated by using

the malloc() function. The function getnode(), is used for creating a node, after allocating
memory for the structure of type node, the information for the item (i.e., data) has to be
read from the user, set next field to NULL and finally returns the address of the node.
Figure 6.2.3 illustrates the creation of a node for single linked list.

no de* getno de()
{
 no de* new no de;
 new no de = (no de *) malloc(s izeof(no de));
 printf("\n Enter data: ");
 scanf("%d", &new no de -> data);
 new no de -> next = NULL;
 return new no de;
}

 10 X

new node

100

Figure 6. 2. 3. new node w it h a v a lue of 10

Creating a Singly Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().
newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;
 If the list is not empty, follow the steps given below:

 The next field of the new node is made to point the first node (i.e. start
node) in the list by assigning the address of the first node.

 The start pointer is made to point the new node by assigning the address

of the new node.
 Repeat the above steps ‘n’ times.

Figure 6.2.4 shows 4 items in a single linked list stored at different locations in memory.

100

10 200 20 300 30 400 40 X

100 200 300 400

sta rt

Figure 6. 2. 4. S ing le L inked L ist w it h 4 node s

The function createlist(), is used to create ‘n’ number of nodes:

vo id c reate list(int n)
{
 int i;
 no de *new no de;
 no de *temp;
 for(i = 0; i < n ; i+ +)
 {
 new no de = getno de();
 if(start = = NULL)
 {
 start = new no de;
 }
 e lse
 {
 temp = start;
 w hile(temp -> next != NULL)
 temp = temp -> next;
 temp -> next = new no de;
 }
 }
}

Insertion of a Node:

 One of the most primitive operations that can be done in a singly linked list is the
insertion of a node. Memory is to be allocated for the new node (in a similar way that is
done while creating a list) before reading the data. The new node will contain empty data
field and empty next field. The data field of the new node is then stored with the
information read from the user. The next field of the new node is assigned to NULL. The

new node can then be inserted at three different places namely:
 Inserting a node at the beginning.

 Inserting a node at the end.

 Inserting a node at intermediate position.

Inserting a node at the beginning:
The following steps are to be followed to insert a new node at the beginning of the list:

 Get the new node using getnode().
newnode = getnode();

 If the list is empty then start = newnode.
 If the list is not empty, follow the steps given below:

newnode -> next = start;
 start = newnode;

The function insert_at_beg(), is used for inserting a node at the beginning
Figure 6.2.5 shows inserting a node into the single linked list at the beginning.

500

10 200 20 300 30 400 40 X

100 200 300 400

sta rt

Figure 6. 2. 5. Ins ert ing a node at t he beg inn ing

5 100

500

Inserting a node at the end:
 The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()
newnode = getnode();

 If the list is empty then start = newnode.
 If the list is not empty follow the steps given below:

temp = start;

 while(temp -> next != NULL)
 temp = temp -> next;

 temp -> next = newnode;
The function insert_at_end(), is used for inserting a node at the end.
Figure 6.2.6 shows inserting a node into the single linked list at the end.

100

10 200 20 300 30 400 40 500

100 200 300 400

sta rt

Figure 6. 2. 6. Ins ert ing a node at t he end.

50 X

500

Inserting a node at intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the list:
 Get the new node using getnode().

newnode = getnode();
 Ensure that the specified position is in between first node and last node. If not,

specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp and prev pointers.

Then traverse the temp pointer upto the specified position followed by prev
pointer.

 After reaching the specified position, follow the steps given below:
prev -> next = newnode;

 newnode -> next = temp;
 Let the intermediate position be 3.

 The function insert_at_mid(), is used for inserting a node in the intermediate
position.

 Figure 6.2.7 shows inserting a node into the single linked list at a specified
intermediate position other than beginning and end.

100

10 200 20 500 30 400 40 X

100 200 300 400

sta rt

Figure 6. 2. 7. Insert ing a node at an int er med ia t e pos it ion.

50 300

500

te mp prev

new node

Deletion of a node:
 Another primitive operation that can be done in a singly linked list is the deletion of a node.
Memory is to be released for the node to be deleted. A node can be deleted from the list

from three different places namely.
 Deleting a node at the beginning.
 Deleting a node at the end.
 Deleting a node at intermediate position.

Deleting a node at the beginning:
The following steps are followed, to delete a node at the beginning of the list:

 If list is empty then display ‘Empty List’ message.
 If the list is not empty, follow the steps given below:

temp = start;
 start = start -> next;

 free(temp);
The function delete_at_beg(), is used for deleting the first node in the list.
Figure 6.2.8 shows deleting a node at the beginning of a single linked list.

200

10 200 20 300 30 400 40 X

100 200 300 400

sta rt

Figure 6. 2. 8. De le t ing a node at t he beg inn ing.

te mp

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:
 If list is empty then display ‘Empty List’ message.
 If the list is not empty, follow the steps given below:

temp = prev = start;
 while(temp -> next != NULL)

 {
 prev = temp;

 temp = temp -> next;
 }
 prev -> next = NULL;

 free(temp);
The function delete_at_last(), is used for deleting the last node in the list.
Figure 6.2.9 shows deleting a node at the end of a single linked list.

100

10 200 20 300 30 X 40 X

100 200 300 400

sta rt

Figure 6. 2. 9. De le t ing a node at t he end.

Deleting a node at Intermediate position:
 The following steps are followed, to delete a node from an intermediate position in

the list (List must contain more than two node).
 If list is empty then display ‘Empty List’ message
 If the list is not empty, follow the steps given below.

if(pos > 1 && pos < nodectr)
 {

 temp = prev = start;
 ctr = 1;
 while(ctr < pos)
 {
 prev = temp;
 temp = temp -> next;

 ctr++;
 }
 prev -> next = temp -> next;
 free(temp);
 printf("\n node deleted..");

 }
 The function delete_at_mid(), is used for deleting the intermediate node in the list.
Figure 6.2.10 shows deleting a node at a specified intermediate position other than
beginning and end from a single linked list.

100

10 300 20 300 30 400 40 X

100 200 300 400

sta rt

Figure 6. 2. 10. De le t ing a node at an int er med ia t e pos it ion.

Traversal and displaying a list (Left to Right):

 To display the information, you have to traverse (move) a linked list, node by node from
the first node, until the end of the list is reached. Traversing a list involves the following
steps:

 Assign the address of start pointer to a temp pointer.

 Display the information from the data field of each node.

The function traverse() is used for traversing and displaying the information stored in the
list from left to right.

vo id t raverse()
{
 no de *temp;
 temp = start;
 printf("\n The co ntents of List (Left to Right): \n");
 if(start == NULL)
 printf("\n Empty List");
 e lse
 while(temp != NULL)
 {
 printf("%d ->", temp -> data);
 temp = temp -> next;
 }
 printf("X");
}

Alternatively there is another way to traverse and display the information. That is in

reverse order. The function rev_traverse(), is used for traversing and displaying the
information stored in the list from right to left.

vo id rev_traverse(no de *st)
{
 if(st == NULL)
 {
 return;
 }
 e lse
 {
 rev_traverse(st -> next);
 printf("%d ->", st -> data);
 }
}

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list using recursion.

int co untno de(no de *st)
{
 if(st == NULL)
 return 0;
 e lse
 return(1 + co untno de(st -> next));
}

Doubly Linked List

 A double linked list is a two-way list in which all nodes will have two links. This helps
in accessing both successor node and predecessor node from the given node position. It
provides bi-directional traversing. Each node contains three fields:

 Left link.
 Data.
 Right link.

 The left link points to the predecessor node and the right link points to the successor
node. The data field stores the required data.

 Many applications require searching forward and backward thru nodes of a list. For
example searching for a name in a telephone directory would need forward and backward
scanning thru a region of the whole list.
 The basic operations in a double linked list are:

 Creation.

 Insertion.
 Deletion.
 Traversing.

A double linked list is shown in figure 6.3.1.

100

 X 10 200 200 30 X

100 200 300

sta rt

Figure 6. 3. 1. Doub le L inked L ist

 HEAP S TAC K

The right f ie ld of
the la st node is
NULL.

The st art
po int er
ho lds t he
addre s s of
the f irst
node of t he
l ist .

Store s t he dat a. Store s t he next
node addre s s.

 100 20 300

Store s t he
prev ious node
addre s s.

 The beginning of the double linked list is stored in a "start" pointer which points to
the first node. The first node’s left link and last node’s right link is set to NULL.
The following code gives the structure definition:

 NULL

sta rt

Figure 6. 4. 1. St ruc ture def in it ion, doub le l ink node and e mpty l ist

Empty list:

 struct dlink list
 {
 struct dlink list * left;
 int data;
 struct dlink list * right;

 };

 typedef st ruct dlink list no de;
 no de *start = NULL;

 left dat a r ight node:

Creating a node for Double Linked List:

 Creating a double linked list starts with creating a node. Sufficient memory has to be
allocated for creating a node. The information is stored in the memory, allocated by using
the malloc() function. The function getnode(), is used for creating a node, after allocating

memory for the structure of type node, the information for the item (i.e., data) has to be
read from the user and set left field to NULL and right field also set to NULL (see figure
6.2.2).

no de* getno de()
{
 no de* newno de;
 newno de = (no de *) malloc(s izeof(no de));
 printf("\n Enter data: ");
 scanf("%d", &newno de -> data);
 newno de -> left = NULL;
 newno de -> right = NULL;
 return newno de;
}

 X 10 X

newnode

100

Figure 6. 4. 2. new node w it h a v a lue of 10

Creating a Double Linked List with ‘n’ number of nodes:
The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().

newnode =getnode();
 If the list is empty then start = newnode.
 If the list is not empty, follow the steps given below:

 The left field of the new node is made to point the previous node.
 The previous nodes right field must be assigned with address of the new

node.
 Repeat the above steps ‘n’ times.

The function createlist(), is used to create ‘n’ number of nodes:

vo id c reate list(int n)
{
 int i;
 no de *new no de;
 no de *temp;
 for(i = 0; i < n; i+ +)
 {
 new no de = getno de();
 if(start = = NULL)
 {
 start = new no de;
 }
 e lse
 {
 temp = start;
 w hile(temp -> right)
 temp = temp -> right;
 temp -> right = new no de;
 new no de -> left = temp;
 }
 }
}

Figure 6.4.3 shows 3 items in a double linked list stored at different locations.

100

 X 10 200 200 30 X

100 200 300

sta rt

Figure 6. 4. 3. Doub le L inked L ist w it h 3 nodes

 100 20 300

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:
 Get the new node using getnode().

newnode=getnode();
 If the list is empty then start = newnode.
 If the list is not empty, follow the steps given below:

newnode -> right = start;
 start -> left = newnode;
 start = newnode;
The function dbl_insert_beg(), is used for inserting a node at the beginning. Figure 6.4.4
shows inserting a node into the double linked list at the beginning.

400

400 10 200 200 30 X

100 200 300

sta rt

Figure 6. 4. 4. Ins ert ing a node at t he beg inn ing

 100 20 300

 X 40 100

400

Inserting a node at the end:
The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()
newnode=getnode();

 If the list is empty then start = newnode.

 If the list is not empty follow the steps given below:
temp = start;

 while(temp -> right != NULL)
 temp = temp -> right;
 temp -> right = newnode;
 newnode -> left = temp;

The function dbl_insert_end(), is used for inserting a node at the end. Figure 6.4.5 shows
inserting a node into the double linked list at the end.

100

X 10 200 200 30 400

100 200 300

sta rt

Figure 6. 4. 5. Ins ert ing a node at t he end

 100 20 300

300 40 X

400

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the list:
 Get the new node using getnode().

newnode=getnode();
 Ensure that the specified position is in between first node and last node. If not,

specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp and prev pointers.
Then traverse the temp pointer upto the specified position followed by prev
pointer.

 After reaching the specified position, follow the steps given below:
newnode -> left = temp;

 newnode -> right = temp -> right;
 temp -> right -> left = newnode;
 temp -> right = newnode;
The function dbl_insert_mid(), is used for inserting a node in the intermediate position.
Figure 6.4.6 shows inserting a node into the double linked list at a specified intermediate

position other than beginning and end.

100

X 10 400
 400 20 300

100

400

200

sta rt

Figure 6. 4. 6. Ins ert ing a node at an int er med ia t e pos it ion

 100 40 200

200 30 X

300

Deleting a node at the beginning:
The following steps are followed, to delete a node at the beginning of the list:

 If list is empty then display ‘Empty List’ message.
 If the list is not empty, follow the steps given below:

temp = start;

 start = start -> right;
 start -> left = NULL;

 free(temp);

The function dbl_delete_beg(), is used for deleting the first node in the list. Figure 6.4.6
shows deleting a node at the beginning of a double linked list.

200

 X 10 200 200 30 X

100 200 300

sta rt

Figure 6. 4. 6. De le t ing a node at beg inn ing

 X 20 300

Deleting a node at the end:
The following steps are followed to delete a node at the end of the list:

 If list is empty then display ‘Empty List’ message

 If the list is not empty, follow the steps given below:

temp = start;

 while(temp -> right != NULL)
 {

 temp = temp -> right;
 }
 temp -> left -> right = NULL;
 free(temp);
The function dbl_delete_last(), is used for deleting the last node in the list. Figure 6.4.7

shows deleting a node at the end of a double linked list.

100

 X 10 200 200 30 X

100 200 300

sta rt

Figure 6. 4. 7. De le t ing a node at t he end

 100 20 X

Deleting a node at Intermediate position:
The following steps are followed, to delete a node from an intermediate position in the list
(List must contain more than two nodes).

 If list is empty then display ‘Empty List’ message.
 If the list is not empty, follow the steps given below:

 Get the position of the node to delete.

 Ensure that the specified position is in between first node and last node. If
not, specified position is invalid.

 Then perform the following steps:
if(pos > 1 && pos < nodectr)

 {

 temp = start;
 i = 1;
 while(i < pos)
 {
 temp = temp -> right;

 i++;

 }
 temp -> right -> left = temp -> left;
 temp -> left -> right = temp -> right;

 free(temp);
 printf("\n node deleted..");
 }

The function delete_at_mid(), is used for deleting the intermediate node in the list. Figure

6.4.8 shows deleting a node at a specified intermediate position other than beginning and
end from a double linked list.

100

 X 10 300 100 30 X

100 200 300

sta rt

Figure 6. 4. 8 De le t ing a node at an int er med ia t e pos it ion

 100 20 300

Traversal and displaying a list (Left to Right):
 To display the information, you have to traverse the list, node by node from the first
node, until the end of the list is reached. The function traverse_left_right() is used for

traversing and displaying the information stored in the list from left to right.
 The following steps are followed, to traverse a list from left to right:

 If list is empty then display ‘Empty List’ message.
 If the list is not empty, follow the steps given below:

temp = start;

while(temp != NULL)
 {
 print temp -> data;
 temp = temp -> right;
 }

Traversal and displaying a list (Right to Left):
 To display the information from right to left, you have to traverse the list, node by
node from the first node, until the end of the list is reached. The function
traverse_right_left() is used for traversing and displaying the information stored in the list

from right to left.
 The following steps are followed, to traverse a list from right to left:

 If list is empty then display ‘Empty List’ message.
 If the list is not empty, follow the steps given below:

temp = start;

 while(temp -> right != NULL)
 temp = temp -> right;
 while(temp != NULL)
 {
 print temp -> data;
 temp = temp -> left;

 }

Counting the Number of Nodes:
The following code will count the number of nodes exist in the list (using recursion).

int co untno de(no de *start)
{
 if(start == NULL)
 return 0;
 e lse
 return(1 + co untno de(start ->right));
}

Circular Linked List

Circular Single Linked List:

It is just a single linked list in which the link field of the last node points back to the address
of the first node. A circular linked list has no beginning and no end. It is necessary to
establish a special pointer called start pointer always pointing to the first node of the list.

Circular linked lists are frequently used instead of ordinary linked list because many
operations are much easier to implement. In circular linked list no null pointers are used,
hence all pointers contain valid address.
A circular single linked list is shown in figure 6.6.1.

100

10 200 20 300 30 400 40 100

100 200 300 400

sta rt

Figure 6. 6. 1. C irc u lar S ing le L inked L ist

The basic operations in a circular single linked list are:

 Creation.
 Insertion.
 Deletion.
 Traversing.

Creating a circular single Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().
newnode = getnode();

 If the list is empty, assign new node as start.
start = newnode;

 If the list is not empty, follow the steps given below:
temp = start;

 while(temp -> next != NULL)
 temp = temp -> next;

 temp -> next = newnode;
 Repeat the above steps ‘n’ times.
 newnode -> next = start;

The function createlist(), is used to create ‘n’ number of nodes:

Inserting a node at the beginning:
The following steps are to be followed to insert a new node at the beginning of the circular

list:
 Get the new node using getnode().

newnode = getnode();
 If the list is empty, assign new node as start.

start = newnode;
 newnode -> next = start;

 If the list is not empty, follow the steps given below:
last = start;

 while(last -> next != start)
 last = last -> next;
 newnode -> next = start;

 start = newnode;
 last -> next = start;
The function cll_insert_beg(), is used for inserting a node at the beginning. Figure 6.6.2
shows inserting a node into the circular single linked list at the beginning.

500

10 200 20 300 30 400 40 500

100 200 300 400

sta rt

Figure 6. 6. 2. Insert ing a node at t he beg inn ing

5 100

500

Inserting a node at the end:
The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode().

newnode = getnode();
 If the list is empty, assign new node as start.

 start = newnode;
 newnode -> next = start;

 If the list is not empty follow the steps given below:
temp = start;

 while(temp -> next != start)
 temp = temp -> next;
 temp -> next = newnode;
 newnode -> next = start;
The function cll_insert_end(), is used for inserting a node at the end.

Figure 6.6.3 shows inserting a node into the circular single linked list at the end.

100

10 200 20 300 30 400 40 500

100 200 300 400

sta rt

Figure 6. 6. 3 Ins ert ing a node at t he end.

50 100

500

Deleting a node at the beginning:
The following steps are followed, to delete a node at the beginning of the list:

 If the list is empty, display a message ‘Empty List’.
 If the list is not empty, follow the steps given below:

last = temp = start;

 while(last -> next != start)
 last = last -> next;
 start = start -> next;
 last -> next = start;

 After deleting the node, if the list is empty then start = NULL.

The function cll_delete_beg(), is used for deleting the first node in the list. Figure 6.6.4
shows deleting a node at the beginning of a circular single linked list.

200

10 200 20 300 30 400 40 200

100 200 300 400

sta rt

Figure 6. 6. 4. De le t ing a node at beg inning.

te mp

Deleting a node at the end:
The following steps are followed to delete a node at the end of the list:

 If the list is empty, display a message ‘Empty List’.
 If the list is not empty, follow the steps given below:

temp = start;

 prev = start;
 while(temp -> next != start)
 {
 prev = temp;
 temp = temp -> next;

 }
 prev -> next = start;

 After deleting the node, if the list is empty then start = NULL.
 The function cll_delete_last(), is used for deleting the last node in the list.
Figure 6.6.5 shows deleting a node at the end of a circular single linked list.

100

10 200 20 300 30 100 40 100

100 200 300 400

sta rt

Figure 6. 6. 5. De le t ing a node at t he end.

Traversing a circular single linked list from left to right:

The following steps are followed, to traverse a list from left to right:
 If list is empty then display ‘Empty List’ message.
 If the list is not empty, follow the steps given below:

temp = start;
do

 {
 printf("%d ", temp -> data);
 temp = temp -> next;
 } while(temp != start);

Circular Double Linked List:

A circular double linked list has both successor pointer and predecessor pointer in circular
manner. The objective behind considering circular double linked list is to simplify the
insertion and deletion operations performed on double linked list. In circular double linked
list the right link of the right most node points back to the start node and left link of the first

node points to the last node.

A circular double linked list is shown in figure 6.8.1.

100

300 10 200 200 30 100

100 200 300

sta rt

Figure 6. 8. 1. C ircu lar Doub le L inked L ist

 100 20 300

The basic operations in a circular double linked list are:

 Creation.
 Insertion.
 Deletion.
 Traversing.

Creating a Circular Double Linked List with ‘n’ number of nodes:
The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().
newnode = getnode();

 If the list is empty, then do the following
start = newnode;

 newnode -> left = start;

 newnode ->right = start;
 If the list is not empty, follow the steps given below:

newnode -> left = start -> left;
 newnode -> right = start;
 start -> left->right = newnode;

 start -> left = newnode;
 Repeat the above steps ‘n’ times.

The function cdll_createlist(), is used to create ‘n’ number of nodes:

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:
 Get the new node using getnode().

newnode=getnode();
 If the list is empty, then

start = newnode;

 newnode -> left = start;
 newnode -> right = start;

 If the list is not empty, follow the steps given below:

newnode -> left = start -> left;

 newnode -> right = start;
 start -> left -> right = newnode;
 start -> left = newnode;
 start = newnode;
The function cdll_insert_beg(), is used for inserting a node at the beginning. Figure 6.8.2

shows inserting a node into the circular double linked list at the beginning.

400

400 10 200 200 30 400

100 200 300

sta rt

Figure 6. 8. 2. Ins ert ing a node at t he beg inn ing

 100 20 300

300 40 100

400

Inserting a node at the end:
The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()

newnode=getnode();
 If the list is empty, then

start = newnode;
 newnode -> left = start;

 newnode -> right = start;
 If the list is not empty follow the steps given below:

newnode -> left = start -> left;

 newnode -> right = start;
 start -> left -> right = newnode;
 start -> left = newnode;
The function cdll_insert_end(), is used for inserting a node at the end. Figure 6.8.3 shows
inserting a node into the circular linked list at the end.

100

400 10 200 200 30 400

100 200 300

sta rt

Figure 6. 8. 3. Insert ing a node at t he end

 100 20 300

300 40 100

400

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the list:

 Get the new node using getnode().
newnode=getnode();

 Ensure that the specified position is in between first node and last node. If not,
specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp and prev pointers.

Then traverse the temp pointer upto the specified position followed by prev
pointer.

 After reaching the specified position, follow the steps given below:
newnode -> left = temp;

 newnode -> right = temp -> right;

 temp -> right -> left = newnode;
 temp -> right = newnode;
 nodectr++;
The function cdll_insert_mid(), is used for inserting a node in the intermediate position.
Figure 6.8.4 shows inserting a node into the circular double linked list at a specified

intermediate position other than beginning and end.

100

300 10 400 400 20 300

100

400

200

sta rt

Figure 6. 8. 4. Insert ing a node at an int er med ia t e pos it ion

 100 40 200

200 30 100

300

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:
 If list is empty then display ‘Empty List’ message.
 If the list is not empty, follow the steps given below:

temp = start;
 start = start -> right;

 temp -> left -> right = start;
 start -> left = temp -> left;
The function cdll_delete_beg(), is used for deleting the first node in the list. Figure 6.8.5
shows deleting a node at the beginning of a circular double linked list.

200

300 10 200 200 30 200

100 200 300

sta rt

Figure 6. 8. 5. De le t ing a node at beg inn ing

 300 20 300

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:
 If list is empty then display ‘Empty List’ message
 If the list is not empty, follow the steps given below:

temp = start;
 while(temp -> right != start)

 {
 temp = temp -> right;
 }
 temp -> left -> right = temp -> right;
 temp -> right -> left = temp -> left;

The function cdll_delete_last(), is used for deleting the last node in the list. Figure 6.8.6
shows deleting a node at the end of a circular double linked list.

100

200 10 200 200 30 100

100 200 300

sta rt

Figure 6. 8. 6. De le t ing a node at t he end

 100 20 100

Deleting a node at Intermediate position:
The following steps are followed, to delete a node from an intermediate position in the list
(List must contain more than two node).

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:
 Get the position of the node to delete.
 Ensure that the specified position is in between first node and last node. If

not, specified position is invalid.
 Then perform the following steps:

if(pos > 1 && pos < nodectr)

 {

 temp = start;
 i = 1;
 while(i < pos)

 {
 temp = temp -> right ;
 i++;
 }
 temp -> right -> left = temp -> left;

 temp -> left -> right = temp -> right;
 free(temp);
 printf("\n node deleted..");
 nodectr--;
 }

The function cdll_delete_mid(), is used for deleting the intermediate node in the list.
Figure 6.8.7 shows deleting a node at a specified intermediate position other than beginning
and end from a circular double linked list.

100

 300 10 300 100 30 100

100 200 300

sta rt

Figure 6. 8. 7. De le t ing a node at an int er med ia t e pos it ion

 100 20 300

Traversing a circular double linked list from left to right:

The following steps are followed, to traverse a list from left to right:
 If list is empty then display ‘Empty List’ message.
 If the list is not empty, follow the steps given below:

temp = start;
Print temp -> data;

 temp = temp -> right;
 while(temp != start)
 {

 print temp -> data;
 temp = temp -> right;
 }

The function cdll_display_left _right(), is used for traversing from left to right.

Traversing a circular double linked list from right to left:
The following steps are followed, to traverse a list from right to left:

 If list is empty then display ‘Empty List’ message.
 If the list is not empty, follow the steps given below:

 temp = start;

do
 {
 temp = temp -> left;
 print temp -> data;
 } while(temp != start);

The function cdll_display_right_left(), is used for traversing from right to left.
Atomic Linked List,

Linked List in Arrays

